
Predicting the Flexibility of Electric Cables using Robot Tactile Sensing and
Push Primitives

Alison Bartsch Achu Wilson AmirPouya Hemmasian Avadh Patel

Abstract

As the prevalence of robot assembly continues to grow,
so does the need for robotic methods that can dexterously
manipulate flexible cables. However, cables will behave
differently depending on their physical properties, chang-
ing how they should be modeled and controlled. In this pa-
per, we create a dataset of GelSight images of different ca-
bles being manipulated for the purpose of classifying these
cables. We perform significant data processing, extracting
the optical flow vectors from the GelSight images to cap-
ture forces experienced during the manipulation task. We
compare the classification ability of numerous shallow ma-
chine learning approaches with CNN . We also implement
PCA to investigate how these methods change with lower di-
mensional data. We found our CNN approach had the best
performance, with a classification accuracy of 95%, though
the shallow ML approaches also achieved good accuracies
greater than 80%.

1. Introduction

Advances in robotic manipulation are helping to auto-
mate numerous complicated assembly tasks. Wire har-
nesses are wire configurations for powering many differ-
ent electrical devices. Currently, wire harness assembly is a
time-intensive and manual process. One of the main tasks
in wire harness assembly is routing a wire through brack-
ets, tubes, holes and around mounts. The physical proper-
ties of the wire, specifically the flexibility (minimum bend-
ing radius) is an important parameter which determines the
routing path. Hence, proper categorization/classification of
cables must be done to ensure the wires are neither over
stressed nor laid loose. We propose a method with which a
robot manipulator equipped with a tactile sensing GelSight
finger can sense the interaction forces on the cable, when it
is pushed against the environment and learn to classify the
cable based on its radius. Enhancing the flexibility of fu-
ture applications to include assembly of bundles of wires of
varying diameters.

Figure 1. This figure illustrates the basic data collection process
for this paper. a) Shows the 5 DOF robot arm equipped with a
parallel gripper with a gelsight tactile sensor gripping a wire and
pressing it against a wall. b) Shows the corresponding behavior of
the gelsight sensor to this action.

2. Related Work

As the sector of autonomous robot assembly has grown,
so has the research interest in developing approaches for
flexible cable manipulation. Some of the earliest work pre-
sented a simple high-speed visual servoing system to ma-
nipulate the cables [4]. More recently, [7] proposed a frame-
work for cable shape manipulation with a dual-arm robot,
by parameterizing the wire shape by a Fourier series.

Similar to the growing interest in cable manipulation,
once [6] presented a new sensor known as the GelSight tac-
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tile sensor, there have been numerous creative approaches
which highlight different ways these tactile sensors can be
used. The GelSight is an image-based tactile sensor, with
a piece of flexible elastomer that makes contact with sur-
faces. When the sensor makes contact with an object, the
elastomer deforms and the camera records this distortion
(shown in Figure 1b). The GelSight sensor has been used
for object identification inside granular media [2], for ex-
ploring shape reconstruction with CNNs [1], and as a part
of a robot hand design [5].

There have even been works that specifically leverage
GelSight sensors for the purpose of cable manipulation. In
[3], they present a perception and control framework that
uses real-time tactile feedback from a GelSight sensor to
manipulate freely moving cables. In this work, they pri-
marily use the GelSight sensor for pose estimation as well
as detecting slip forces. They achieved impressive results,
with the robot able to lightly grip and slide along the length
of the cable. However, this work focuses on how to manip-
ulate these wires, whereas in this project we are interested
in classifying the cables we are manipulating. As there are
no works directly relating to this, we are collecting our own
dataset.

3. Data
For this work, we collected our own dataset which con-

sists of GelSight images and the corresponding label/class
of the wire. To gather the samples, the robot picks up the
cable, moves to the wall and then presses the wire down
against the wall, recording GelSight images during this tra-
jectory. We repeated this 35 times for each of the 3 wires.
Resulting in a total dataset of 105 data points. This dataset
is quite small due to the time-intensity of collecting real-
world data, as well as due to the degradation of the pro-
totype GelSight sensors. As the Gelsight prototype sensors
were not designed with robustness in mind, the flexible elas-
tomer as well as the reflective paint surfaces showed degra-
dation on repeated and continuous usage. Due to the limited
size of our dataset, the conventional CNN-based image clas-
sification approaches were infeasible. Thus, we needed to
perform significant data processing, feature engineering and
dimensionality reduction techniques to convert the image-
based data into a different data type that shallow machine
learning approaches could handle. On the other hand, it
enabled us to try increasing the shallow machine learning
performance through the application of reduced dimensions
on the data.

3.1. Data Collection

In order to collect a large amount of data, with minimum
human intervention we automated the data collection pro-
cess. UR5e - a 6 degree of freedom robot manipulator from
Universal Robots along with a parallel jaw gripper is used

for data collection. The GelSight sensor is attached to one
of the fingers of the gripper enabling us to collect the tactile
imprints of the grasped object. In addition, a fixture with
self resetting capabilities is designed and machined to hold
the cables and reset it to a predefined pose after each iter-
ation. The fixture also has a edge on which the cables can
be pushed against to collect the tactile data and estimate the
flexibility. Figure.1 illustrates the data collection setup that
was used, as well as a raw sample of data obtained from the
GelSight sensor. The data collection process is as follows:

1. Robot picks up the cable from its resting place.

2. Robot moves cable near to the edge of the fixture.

3. Data capturing of GelSight sensor and end effector
pose is initialized.

4. Robot moves slowly downward, pushing the cable
against the edge of the fixture.

5. Once the robot reaches the set z axis depth, data cap-
turing is stopped, and the collected data is saved.

6. Robot moves back to the initial position and drops the
cable into the wedge shaped resetting area.

These six steps are then repeated for cables of different
diameters. During each iteration, the diameter of the cor-
responding cable is entered manually, from which the class
label is generated and added to the dataset.

3.2. Data Processing/Feature Engineering

GelSight sensors can capture rich contact information
which consists of high resolution surface geometry as well
as the deformation information by tracking the black mark-
ers. The amount of marker deformation corresponds to the
external contact force on the sensor. For the purpose of this
project, we are only focused on these forces measured by
the black markers (shown in Figure 1b). Focusing on the
markers alone brings about two main advantages, the first
one being making the system agnostic to the local geome-
try/shape/texture which will be very much prominent in the
RGB raw image and could lead to over-fitting. The second
advantage is the reduction in input feature size. Reducing
the input feature size from 640x480x3 pixel values to an
array of 11x9 vectors corresponding to the markers could
greatly help the learning process time. As the GelSight sen-
sor deforms when it presses against the object, these mark-
ers move based on the local forces they experience. The
key intuition behind this project is cables of different bend-
ing radius or flexibility will produce different forces when
pushed against an object.

The raw data collected consists of a time-indexed series
of GelSight RGB images of size 640x480 each and robot
poses corresponding to a single press motion. Once the raw
images are captured, traditional computer vision techniques

2



Figure 2. The data processing pipeline. The data is converted from the raw gelsight image to a processed gelsight image with vectors
denoting the marker movement. This is then converted to a black and white image of the marker optical flow. This is then converted to an
array format of marker position and vector information. Finally this is converted to a tensor data structure.

are used to extract the position and deformation of the black
optical markers. The raw RGB image is first converted
gray-scale and thresholded to extract the pixels correspond-
ing to the markers. It is then cleaned up using a morpho-
logical closing operation with a circular kernel. Contours
are then detected on the cleaned up image which are then
filtered and sorted depending on their size. Finally the cen-
ter positions of each markers are estimated by calculating
the image moment on the filtered contours. The difference
in marker positions during the start of data collection when
the cable is not in contact with anything and the marker po-
sitions when the cable is fully pressed against the edge is
calculated to estimate the marker displacements in x and y
axes.

One of the issues with marker tracking at times, some of
the markers may fail to be detected. This resulted in incon-
sistent number of marker vectors ranging from 87 markers
to 93 markers. Inconsistent input shapes could be a bot-
tleneck to the subsequent learning models. Markers were
calculated on all images in the dataset and it is found that
85 markers were consistently detected in all frames. This
the image processing system was modified to return only
these robust markers.

Once the marker positions (x,y) and displacements (u,v)
are calculated reliably, they can be converted into an 85x4
array. This is the data format that will be used for dimen-
sionality reduction as well as all of the shallow machine
learning approaches, except for CNN. To make this data us-
able for a CNN, we then convert this data into a tensor for-
mat, preserving the spatial component of the data without
explicitly containing it. Figure 2 visualizes the data pro-
cessing pipeline.

Even with the data processing, the array format of the
data still has over 300 features. This is because there are 85
markers, each with a corresponding x, y, u and v. This is
the perfect scenario to explore principal component analy-
sis (PCA), as there is significant opportunity for reducing
the feature dimensions. We found that 90% of variance
is explained when reducing the features down to eight di-
mensions, 80% of variance is explained when reducing the

Figure 3. a) Shows how the reduced dimensions with PCA corre-
spond to the percentage of variance explained. b) Shows the data
reduced to 2D with PCA, where 65% of the variance is explained.
Even still, visually the three wire classes are relatively distinct.

features down to five dimensions, and 65% of variance is
explained when reducing the features down to two dimen-
sions. The two-dimensional features can be seen in Figure
3, where it is clear that each class is clustered.

4. Methods
Numerous approaches were explored for classifying the

cables with the goal of comparing the performances of
them, in this case decision trees, random forest, k nearest
neighbors, support vector classification, naive bayes and
logistic regression, with simple neural networks, in this
case CNN. In each subsection, we will provide a very brief
overview of each method, specifically the data it was trained
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Figure 4. This figure shows a direct comparison of the models performance (that we ran with reduced dimensions of our dataset) on
different PCA dimensions.

on, and why we chose to implement this method.

4.1. Decision Tree

Our decision tree model model was trained on the array
format of the data. Specifically, we trained the decision tree
on the high-dimensional dataset as well as reduced order
data with PCA (shown in Figure 4). This method is very
prone to overfitting, and we expect to see overfitting with
our small dataset.

4.2. Random Forest

Random Forest is one of the most popular machine learn-
ing models which is basically an ensemble of decision trees.
Because this model consists of many decision trees and
classifies the data based on the majority vote of those trees,
it is much less prone to overfitting than decision tree. Con-
sidering the low number of data points that we have, de-
cision tree is highly prone to overfitting. Using ensemble
methods like Random Forests can avoid overfitting in many
scenarios, so this algorithm is a reasonable choice to try for
our classification task.

4.3. Logistic Regression

We chose Logistic Regression as one of the candidates
because of its simplicity and interpretability. We also used
the default L2 regularization to avoid overfitting, which is
probable due to the size of our dataset.

4.4. MLP

Neural Networks are universal function approximators,
but they need large amount of data to train. Since the size
of our dataset is not large, we had to avoid overfitting by
reducing the complexity of the network, so we used a sim-
ple neural network with one hidden layer consisting of 16
hidden units in order to classify the data in low-dimensional
spaces. The other hyperparameters of the MLP were the de-
fault settings of sklearn, except the max_iter parameter
which was set to 2000.

4.5. Naive Bayes

Despite its simplicity and simplifying assumptions,
Naive Bayes model have shown very magnificent perfor-
mance in many classification problems. We observed in
the two-dimensional visualization of the dataset that each
class indeed forms a cluster in the space with a rather sim-
ple shape and distribution. Naive Bayes algorithm assumes
a Gaussian distribution for each feature in each class, there-
fore it makes sense to try this computationally cheap algo-
rithm.

4.6. Support Vector Machine

The Support Vector Machine is considered to be a robust
machine learning model for classification because it learns
a decision boundary that maximizes the margin between
classes. Looking at the two dimensional visualization of
the data, we can see that the data clusters do not form com-
plex manifolds, so SVM has a chance of performing well at
classifying this dataset at some higher dimension.

4.7. K Nearest Neighbors

The K Nearest Neighbors Algorithm might be able to
achieve very outstanding performance if the training dataset
is small and is not too high-dimensional. Since the number
of data points that we have is only 105, and we reduced
the dimensionality of the data with PCA, KNN is definitely
worth the try.

4.8. CNN

The use of domain knowledge can be of high importance
in developing machine learning models. When dealing with
spatial data, where nearby locations and pixels might have
meaningful relations, Convolutional Neural Networks are
one of the best performing models. These kinds of mod-
els revolutionized Machine Learning for images and gener-
ally tensor-structured data. Due to the nature of our data
which is a two-dimensional distribution of marker move-

4



Figure 5. This figure shows how the decision tree, random forest, logistic regression, Naive Bayes, SVM and KNN models’ accuracies
change when given various reduced order data, ranging from 2 to 20 dimensions. The decision tree, and Naive Bayes models had the best
test performances with the lower dimensions of data. Whereas random forest, SVM, and KNN models all had the best test performances
with the data between 8 and 12 dimensions. Finally, the logistic regression and MLP performed best at test time with the larger dimensional
data.

ments, we chose CNN as one of the promising models to
try. We started with a very simple CNN with only two con-
volutional layers, each with only one filter, and the model
still managed to learn the pattern of the data with a very high
accuracy. The model begins by applying a 3x3 convolution,
followed by a 2x2 max pooling, then a 2x2 convolution, and
finally flattening the result and using a dense layer with soft-
max activation for the final prediction. This CNN consists
of only 45 parameters which is very impressive considering
the dimensionality of the tensor-shaped data is almost four
times this number. Since the trained model highly depends
on the initialization of its parameters, we trained this archi-
tecture with 30 random initialization and chose the best one
based on the test accuracy.

5. Experiments

Each of the six shallow machine learning models was
trained on 80% of the data, and tested on the other 20%.
For each algorithm, we performed a 5-fold cross-validation
and reported the average test accuracy across the five folds
for each model. We tried training the models with different
number of PCA dimensions for the dataset, ranging from 2
to 20, and reported the average test accuracy. The results
can be found in figure 5. We can see that the ML models
show different behaviours when we increase the dimension
of the data. For all models, the default settings of the hyper-
parameters in sklearn were chosen.

We observe that the decision tree noticeably overfits to
the training data, and we see that the overfitting gets worse
with the increase of the number of dimensions. The Ran-

dom Forest however, avoids this amount of overfitting be-
cause it takes into account many decision trees. When the
dimensionality increases, the random forest leverages the
new information provided by the higher dimensions pretty
well and shows an increasing test accuracy, up to 92%.
Since the default setting of sklearn does not include any
regularization technique for these models, the training ac-
curacy for these models are 100%, meaning that the trees
will continue to grow until the training data is fully pure in
each leaf.

The logistic Regression model uses L2 Regularization,
which reduces overfitting. we can see that the trend for
training accuracy and test accuracy is similar, but the gap
widens for larger dimensions, indicating more overfitting.
The results indicate that the model uses the new informa-
tion added in the high dimensions to improve its perfor-
mance and achieving a test accuracy up to 90% with just
10 dimensions.

The Naive Bayes algorithm shows an interesting behav-
ior which is not consistent across different number of di-
mensions. In the low dimension regime, the performance
of the model is at its best, but when we increase the di-
mensionality to numbers around 10 to 15, the performance
gets worse. However, the model begins to improve its per-
formance again by increasing the dimensionality from the
range 10-15 to higher dimensions. The reason behind this
behavior is that Naive Bayes assumes conditional indepen-
dence of features within each class, and a gaussian distri-
bution for each feature in a class. The bad performance of
this model in the range of 7 to 15 might be due to the fact
that the assumptions made by naive bayes do not hold at all,
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Figure 6. These figures show the loss and accuracy vs epoch for our CNN. a) Is the final model, which reaches a test accuracy of 95%. b)
Shows a case of overfitting. c) Is an example of how an outlier in the test set makes the cross-entropy loss diverge, despite high accuracy.

while in other regimes for the dimensionality, the features
can be represented with gaussian distribution within each
class.

The SVM algorithm has the worst performance on this
problem, and it does not seem to show much difference
in its performance with changing the dimensionality of the
dataset. This means the nature of our data is not compatible
with this algorithm, and the patterns cannot be detected as
well as the other ML algorithms.

Next, we can see that the performance of the KNN model
is pretty impressive considering its simplicity. In the 20 di-
mensional space, the data points seem to form nice clus-
ters so that the class of each point can be predicted from its
neighbors pretty well.

The MLP also shows an overfitting behaviour in high di-
mensions because the number of parameters and the input
dimensions increase while the size of the dataset remain the
same low number. However, it can still achiece a test accu-
racy up to 92% if provided with the right input dimension.

Finally, we have the CNN model which is the most justi-
fiable model because of the structure of our data. The most
important takeaways of our experiments with the CNNs will
be discussed in this paragraph. First of all, we mentioned
in the previous section that the final model highly depends
on the initialization of the parameters of the model. If a
model starts from a good location in the loss landscape, the
final model will be a well performing model. We trained
the same architecture 30 times with different parameter ini-
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Figure 7. This figure shows the convolution layers of our CNN for different samples. Each row represents a different sample from our
dataset. The graph at the left shows the movement of each marker of the GelSight sensor for that sample. The 3 figures on the right show
the convolutions layers. Looking at these convolutions, it appears that the CNN is learning where the wire is.

tializations and picked the best performing one based on the
test accuracy. We defined and trained our CNN with Tensor-
Flow, and used the Adam optimizer and the cross-entropy
loss. Looking at Figure 6, we can see different scenarios
that might happen while trying to train a CNN. In some
scenarios, the training process might lead the model to a
bad local optima which causes overfitting and a bad perfor-
mance on the test set, as can be seen in Figure 6.b. Since the
formula for cross-entropoy loss contains logarithms, values
close to zero in the logarithm can make the loss diverge, so
outliers can have a negative impact on the loss and the gen-
eral training. Here in Figure 6.c, there is an outlier in the
validation dataset, which makes the test loss diverge, but
the test accuracy is not affected as much because it is only
one or few outliers. Another interesting observation is that
CNNs learn meaningful features. We visualized the output
of the layers of our final CNN in Figure 7, and the filter in
the first layer seems to learn the area in the sensor which is
experiencing the most tension and that is where the cable is
being held.

To summarize, the CNN achieves the best performance
with 95% test accuracy, and that is due to the fact that

this model takes advantange of the positional information
of the data, and learns translation-invariant features. How-
ever, other ML models also can achieve good performance
of around 90% accuracy, but are more prone to overfitting
and lose information in the process of dimensionality reduc-
tion. CNN on the other hand, includes an automatic feature
detection and is seen to learn meaningful features by its pa-
rameterized filters in the convolution layers.

6. Conclusion

Through this project, we learned the value of data pro-
cessing and feature engineering. Though we have a small
dataset, with only 105 samples, we were able to achieve
good classification accuracy with a number of shallow and
deep machine learning methods. We were able to reach this
accuracy by transforming the raw GelSight images into sim-
pler data that was easier to handle and learn from.

Though we are able to demonstrate good results with our
dataset, the dataset itself is quite small and only includes
three different cables. Thus, in order to improve this work,
in the future we need to collect significantly more data and
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demonstrate stronger, more reliable and generalizable re-
sults. In this work, we only focused on cable classification,
specifically classifying the cables based on their diameters.
However, with more data, we hope to explore regression as
well. This way, we could show our model an unseen ca-
ble, and correctly identify its properties. The results of this
work would be useful for cable manipulation methods. The
robot would be able to perform the simple action of press-
ing the cable against a surface to identify its properties, then
by simply modifying parameters in the controller, best per-
form the task with that given cable. This has the potential
to improve robustness of cable manipulation approaches as
well as generalizablity to new, unseen cables.

7. Contribution
Achu worked with the hardware setup and data collec-

tion and data prepocessing, computing marker optical flow
and converting the gelsight images to the array format, as
well as initial implementations of kmeans and random for-
est. For the writeup, Achu worked on the data section. Al-
ison worked with the hardware setup and data collection,
as well as initial implementations of knn and SVM. For
the writeup, Alison worked on the introduction, literature
review, data, the figures and conclusion. AmirPouya im-
plemented the final versions of the shallow ML algorithms
as well as the CNN and MLP. In doing so, AmirPouya re-
formatted the data to the tensor structure to work with the
CNN. For the writeup, AmirPouya focused on the meth-
ods and experiments sections. Avadh created an initial im-
plementation of an MLP, and kmeans and for the writeup
helped with the methods section and data collection.

8. Code
Our code and dataset can be accessed

with this Google Drive link: https://
drive.google.com/drive/folders/
1mmT6ZaLZNHHHePVQzkeQzmKcWhH2K-fg?usp=
sharing
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