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Abstract—Grasping and manipulation of objects are common
both in domestic and industrial environments. Recent works
exploring learning based solutions have shown promising re-
sults on robotic manipulation tasks. One efficient approach
for training such learning agents is to train them within a
simulated environment, followed by their deployment on real
robots (Sim2Real). Most current works leverage camera vision to
facilitate such manipulation tasks. However, camera vision might
be significantly occluded by robot hands during the manipulation.
Tactile sensing is another important sensing modality that offers
complementary information to vision and can make up the
information loss caused by the occlusion. However, the use of
tactile sensing is restricted in the Sim2Real research due to
no simulated tactile sensors available in the current simulation
platforms. To mitigate the gap, we introduce a novel approach for
simulating a GelSight tactile sensor in the commonly used Gazebo
simulator. Similar to the real GelSight sensor, the simulated
sensor can produce high-resolution images by an optical sensor
from the interaction between the touched object and an opaque
soft membrane. It can indirectly sense forces, geometry, texture
and other properties of the object and enables the research of
Sim2Real learning with tactile sensing. Preliminary experiment
results have shown that the simulated sensor could generate
realistic outputs similar to ones captured by a real GelSight
sensor.

I. INTRODUCTION AND RELATED WORK

The manipulation of objects is prevalent in various appli-
cations, e.g., grasping tools, untangling a cable and folding a
piece of garment. Recent works on using robot platforms for
the manipulation tasks have shown inspiring results, especially
ones using Deep Learning based approaches [1]. Such methods
usually require a large number of training iterations with many
robotic arms being used in parallel, to learn the necessary ma-
nipulation policies, which would be costly to replicate. More
recently, Sim2Real learning approaches have been proposed
to mitigate this problem [2]: The agent is trained firstly in
a simulated scene and then the learned policy is deployed
on a similar real robot and environment. An example of
Sim2Real learning is [3], in which the task is to grasp, fold and
hang a towel using a robot arm. Camera vision is the mostly
commonly used sensing modality to facilitate the manipulation
tasks in these Sim2Real works. However, the visual perception
can be easily occluded by either the robot hands or other
objects, as observed in [3] where the main failures arise from
weak or incorrectly centered grasps.

In addition to vision, tactile sensing can also be used to
facilitate perception and grasping tasks, and can make up the
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information loss of vision due to the occlusion, demonstrated
on the real robot setups [4]. However, limited works have
been done on simulating tactile sensors, causing difficulties
for Sim2Real learning with tactile sensing. Simulation models
were built for piezoresistive tactile arrays (tactile sensors from
Weiss Robotics) in [5], [6]. However, to the best of our
knowledge, there has been no work on creating simulation
models for optical tactile sensors [7], [8], that are of high-
resolution, and sensitive to sense fine textures and shapes.
In this paper, we develop a simulated sensor model for the
GelSight sensor [7] that is one of the mostly widely used
optical tactile sensors. Core ideas from our work can also be
used to construct the simulation of other optical tactile sensors,
like the TacTip [8]. The developed simulated sensor, shown in
Figure 1, enables the Sim2Real learning with tactile sensing,
and also avoids potential damage to the delicate soft elastomer
of such tactile sensors due to frequent use in real experiments.

Fig. 1: Our experimental setup. Views of our real (left) and virtual
(right) robot platform with a GelSight sensor mounted onto the end-
effector of a UR5 robotic arm.

II. SIMULATION OF A GELSIGHT SENSOR

The real GelSight consists of a membrane that is internally
illuminated by 4 opposite multi-color LEDs, producing a
high-resolution tactile image that is captured by a webcam
installed in the sensor core. However, in the current simulators
used in robotic applications, such as Gazebo1, PyBullet2 and
MuJoCo3, the simulation of soft material deformations is not
supported, or only with low resolution and accuracy. Thus,
it would result in no or low quality tactile images when
attempting to capture the external forces applied to the virtual
membrane, with a 2D camera positioned in the sensor core.
To overcome the limitations, we obtain the measured object
surface directly from the simulation and generate the tactile
images by taking it as an inverse problem of the Surface
Reconstruction, which is described by:

I(x, y) = R(
∂f

∂x
,
∂f

∂y
) (1)

where I denotes the output image, f is the elastomer surface
function, and R is the reflectance function that models both

1 http://gazebosim.org 2 https://pybullet.org 3 http://www.mujoco.org



the lighting conditions and the surface material reflectance
properties.

The surface functions f can be obtained using a variety
of approaches. The solution we propose here is by casting
orthogonal rays to the sensor base plane and intersecting them
with the closest object, which is similar to the behaviour of
a depth camera. In our case, using the Gazebo simulator, we
are able to add a depth camera to the simulation, to obtain
the desired surface map. From the obtained depth map, we
limit all depths to a maximum of 3mm above the simulated
sensor shell, i.e., the elastomer outside surface, as shown in
Figure 1, resulting in a depth map that captures the object part
penetrating the elastomer. To obtain ∂f

∂x and ∂f
∂y we perform

2D convolutions over the the depth map matrix, as discrete
centered derivatives using 3×1 and 1×3 kernels respectively.
We normalize these values by dividing them by 2r, where r is
a pixel-to-meter ratio. To obtain r we put a cube of side size
5 mm against the virtual sensor, and measure the distance in
pixels between the first and last in-contact pixels in a same
row. Then, to implement the reflectance function R in Equation
(??), we follow Phong’s reflection model:

I(x, y) = kaia +
∑
m∈L

(kd(L̂m · N̂)im,d + ks(R̂m · V̂ )αim,s)

(2)
R̂m = 2(L̂m · N̂)N̂ − L̂m (3)

where N̂ represents the surface normal vector, given by
(∂f∂x ,

∂f
∂y ,−1); L represents the set of 4 LEDs (white, blue,

red and green, as in [7]); L̂m the direction of the LED light,
i.e., (−1, 0, 0), (0,−1, 0), (1, 0, 0) and (0, 1, 0). By conducting
extensive experiments, we set the shininess constant α to 5,
the diffuse constants kd to 0.5, and the specular constant ks to
0.15. Instead of considering a solid ka ambient light, we use
an empty background image captured using the real sensor.
Furthermore, we add a black darkening mask, dependant on
the pixel penetration depth, and tilt the LEDs slightly towards
the elastomer, i.e., we set the L̂m 3rd component to 0.15.
This results in better separation of touch and non-touch areas.
Finally, because the depth camera measures the object in
contact with the sensor and not the elastomer surface, we need
emulate elastomer displacement around the touching area. For
instance, a flat sharp surface touching the elastomer would
result in (almost) no gradients and no tactile information
observed. To this end, we produce a displacement map by
blurring the depth map 5 times with a 15 × 15 mean kernel.
We then select the non-touching pixels (> 3mm) from the
displacement map and subtract them to the surface depth map.

III. EVALUATION

We measured 4 elementary surfaces, shown in Figure 2,
with our real GelSight sensor: a round smooth surface, a large
flat displacement, a thin protrusion and a prism corner. We
then obtained correspondent pairs by placing virtual objects
in contact with our virtual sensor. We can understand the
two main inaccuracies resulting from our method. 1) The
imprecise shadowing particularly visible near the edge of the

real sphere, that we mitigate with the darkening mask. 2) And,
the less realistic elastomer displacement generated with the
blur effect, more prominent in the real samples. We can also
notice the micro details in the real objects that don’t exist in the
virtual correspondences, e.g., the prism bezel present on the
last sample. Nonetheless, by using our method we should be
able to generate tactile images for any complex surface/texture
that can be displayed in the simulation.

Fig. 2: Real vs. virtual tactile images. Samples captured by a real
GelSight sensor (top) and generated virtual correspondences using
our method (bottom).

IV. CONCLUSION AND FUTURE WORK

In this paper we introduce a novel way of generating tactile
images from a simulated GelSight sensor, to enable Sim2Real
learning with tactile sensing. As the proposed method only
depends on the surface function, it can be implemented in any
current popular robotics simulator. Our proposed method will
be used to augment real and/or generate entirely new synthetic
datasets. Further improvements to our method can also be
considered, such as leveraging contact mechanics theory to
model the elastomer displacement. Quantitative analysis of the
generated outputs [9] will also be conducted to further validate
our proposed approach.
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